|
Parallel numerical verification of the σ_odd problem
October 6, 2018
|
#include "../helper/helper.hpp"#include "divisors.hpp"#include "harmonic.hpp"#include "primes.hpp"Go to the source code of this file.
Namespaces | |
| sigmaodd | |
| A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
| std::vector< nat_type > | sigmaodd::coprime_factors_ (nat_type a, nat_type b) |
| Return a list of factors such that all factors are coprimes and divide a*b, and these factors are (possibly) sufficient for coprime_factor_exps(). More... | |
| std::ostream & | sigmaodd::operator<< (std::ostream &out, const FactorExp &factor_exp) |
| Return "factor^exponent" representation of factor_exp. More... | |
| std::vector< FactorExp > | sigmaodd::coprime_factor_exps (nat_type a, nat_type b) |
| Heuristic to return a list of factors with their exponents such that all factors are coprimes and the product == a*b. If failed to have a list at least two factors then return an empty list. More... | |
| std::pair< nat_type, unsigned int > | sigmaodd::divide_until_nb (nat_type n, nat_type d) |
| Divide n by d until the result is not divisible by d, and return (result, number of divisions). More... | |
| nat_type | sigmaodd::first_divisor (nat_type n) |
| Return the first divisor of n > 1 (or 1 if n <= 1) More... | |
| bool | sigmaodd::is_square (nat_type n) |
| Return true iff n is a perfect square. More... | |
| nat_type | sigmaodd::pollard_rho (nat_type n) |
| Return pollard_rho(n, rand() % n, floor square root of n). More... | |
| nat_type | sigmaodd::pollard_rho (nat_type n, nat_type random, nat_type max_iteration) |
| Heuristic to find a proper divisor of n with the Pollard's rho heuristic. More... | |
| nat_type | sigmaodd::pollard_rho_repeat (nat_type n, nat_type nb_tries) |
| Try pollard_rho(n) a maximum of nb_tries times and return 0 or the first divisor find. More... | |
| nat_type | sigmaodd::sum_divisors__factorize (nat_type n) |
| Calculates the sum of all divisors of n by the factorization method and returns it. More... | |
| nat_type | sigmaodd::sum_divisors__naive (nat_type n) |
| Calculates the sum of all divisors of n by the naive method and returns it. More... | |
| nat_type | sigmaodd::sum_odd_divisors__factorize (nat_type n) |
| Calculates the sum of odd divisors of n by the factorization method and returns it. More... | |
| nat_type | sigmaodd::sum_odd_divisors__naive (nat_type n) |
| Calculates the sum of odd divisors of n by the naive method and returns it. More... | |
| nat_type | sigmaodd::sum_odd_divisors_upper_bound (nat_type n) |
| Return an upper bound of sum odd divisors. More... | |
| nat_type | sigmaodd::sum_odd_divisors_upper_bound__DeTemple (nat_type n) |
| Return an upper bound of sum odd divisors of n using the DeTemple inequalities. More... | |
| nat_type | sigmaodd::sum_odd_divisors_upper_bound__DeTemple_ceil (nat_type n) |
| Return an upper bound of sum odd divisors of n using the DeTemple inequalities. ??? More... | |
| nat_type | sigmaodd::sum_odd_divisors_upper_bound__DeTemple (nat_type n, nat_type k) |
| Return an upper bound of sum odd divisors of n using the DeTemple inequalities and the knowledge that n have no divisors <= k. More... | |
(December 20, 2017)
GPLv3 — Copyright (C) 2017 Olivier Pirson http://www.opimedia.be/
Definition in file divisors.cpp.
1.8.13